Transforming growth factor-beta and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes.

نویسندگان

  • Mats Grände
  • Asa Franzen
  • Jan-Olof Karlsson
  • Lars E Ericson
  • Nils-Erik Heldin
  • Mikael Nilsson
چکیده

Enhancement of tumor cell growth and invasiveness by transforming growth factor-beta (TGF-beta) requires constitutive activation of the ras/MAPK pathway. Here we have investigated how MEK activation by epidermal growth factor (EGF) influences the response of fully differentiated and growth-arrested pig thyroid epithelial cells in primary culture to TGF-beta1. The epithelial tightness was maintained after single stimulation with EGF or TGF-beta1 (both 10 ng/ml) for 48 hours. In contrast, co-stimulation abolished the transepithelial resistance and increased the paracellular flux of [(3)H]inulin within 24 hours. Reduced levels of the tight junction proteins claudin-1 and occludin accompanied the loss of barrier function. N-cadherin, expressed only in few cells of untreated or single-stimulated cultures, was at the same time increased 30-fold and co-localised with E-cadherin at adherens junctions in all cells. After 48 hours of co-stimulation, both E- and N-cadherin were downregulated and the cells attained a fibroblast-like morphology and formed multilayers. TGF-beta1 only partially inhibited EGF-induced Erk phosphorylation. The MEK inhibitor U0126 prevented residual Erk phosphorylation and abrogated the synergistic responses to TGF-beta1 and EGF. The observations indicate that concomitant growth factor-induced MEK activation is necessary for TGF-beta1 to convert normal thyroid epithelial cells to a mesenchymal phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cooperation between snail and LEF-1 transcription factors is essential for TGF-beta1-induced epithelial-mesenchymal transition.

Transforming growth factor beta 1 (TGF-beta1) has been shown to induce epithelial-mesenchymal transition (EMT) during various stages of embryogenesis and progressive disease. This alteration in cellular morphology is typically characterized by changes in cell polarity and loss of adhesion proteins such as E-cadherin. Here we demonstrate that EMT is associated with loss of claudin-1, claudin-2, ...

متن کامل

TGF-β regulates isoform switching of FGF receptors and epithelial–mesenchymal transition

The epithelial-mesenchymal transition (EMT) is a crucial event in wound healing, tissue repair, and cancer progression in adult tissues. Here, we demonstrate that transforming growth factor (TGF)-β induced EMT and that long-term exposure to TGF-β elicited the epithelial-myofibroblastic transition (EMyoT) by inactivating the MEK-Erk pathway. During the EMT process, TGF-β induced isoform switchin...

متن کامل

Parathyroid hormone-related protein promotes epithelial-mesenchymal transition.

Epithelial-mesenchymal transition (EMT) is an important process that contributes to renal fibrogenesis. TGF-beta1 and EGF stimulate EMT. Recent studies suggested that parathyroid hormone-related protein (PTHrP) promotes fibrogenesis in the damaged kidney, apparently dependent on its interaction with vascular endothelial growth factor (VEGF), but whether it also interacts with TGF-beta and EGF t...

متن کامل

Epithelial-mesenchymal transition in ovarian cancer.

Ovarian cancer is a highly metastatic disease and the leading cause of death from gynecologic malignancy. Hence, and understanding of the molecular changes associated with ovarian cancer metastasis could lead to the identification of targets for novel therapeutic interventions. The conversion of an epithelial cell to a mesenchymal cell plays a key role both in the embryonic development and canc...

متن کامل

Cooperation between Snail and LEF-1 Transcription Factors Is Essential for TGF- 1–induced Epithelial–Mesenchymal Transition□D

Transforming growth factor beta 1 (TGF1) has been shown to induce epithelial–mesenchymal transition (EMT) during various stages of embryogenesis and progressive disease. This alteration in cellular morphology is typically characterized by changes in cell polarity and loss of adhesion proteins such as E-cadherin. Here we demonstrate that EMT is associated with loss of claudin-1, claudin-2, occlu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 115 Pt 22  شماره 

صفحات  -

تاریخ انتشار 2002